Statistical Quality Analysis of Wavelet Based SAR Images in Despeckling Process

نویسندگان

  • Prabhishek Singh
  • Raj Shree
چکیده

Synthetic aperture radar (SAR) images are mainly denoised by multiplicative speckle noise, which is due to the consistent behavior of scattering phenomenon known as speckle noise. This paper presents the basic concept, role and importance of Discrete Wavelet Transform (DWT) in the field of despeckling SAR images and also offers a study of SAR image quality on applying DWT on the speckled image and log transformed speckled image. Log transform operation plays a decisive and comfortable role in despeckling SAR images as this operation changes the multiplicative behavior of the speckle noise to an additive which enables to use the additive noise restoration model efficiently. Wavelet transform has now become important in the field of image restoration although being in practice for a decade. Wavelet transform allows both time and frequency analysis simultaneously around a particular time. This transform is most appropriate for the non-stationary signals, so it deals with satellite imagery in a more efficient manner. The major part of this paper is revolving around DWT image decomposition with its role and practical implementation on the speckled image and log transformed speckled image. All the experimental results are performed on the SAR images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Using Laplace Distribution

Speckle is a granular noise-like phenomenon which appears in Synthetic Aperture Radar (SAR) images due to coherent properties of SAR systems. The presence of speckle complicates both human and automatic analysis of SAR images. As a result, speckle reduction is an important preprocessing step for many SAR remote sensing applications. Speckle reduction can be made through multi-looking during the...

متن کامل

Speckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Exploiting Intra-scale and Inter-scale Dependencies

Synthetic Aperture Radar (SAR) images are inherently affected by a multiplicative noise-like phenomenon called speckle, which is indeed the nature of all coherent systems. Speckle decreases the performance of almost all the information extraction methods such as classification, segmentation, and change detection, therefore speckle must be suppressed. Despeckling can be applied by the multilooki...

متن کامل

An Adaptive Sar Image Despeckling Algorithm Using Stationary Wavelet Transform

In this paper, we present a Stationary Wavelet Transform (SWT) based method for the purpose of despeckling the Synthetic Aperture radar (SAR) images by applying a maximum a posteriori probability (MAP) condition to estimate the noise free wavelet coefficients. The solution of the MAP estimator is based on the assumption that the wavelet coefficients have a known distribution. Rayleigh distribut...

متن کامل

An Adaptive Rayleigh-Laplacian Based MAP Estimation Technique for Despeckling SAR Images using Stationary Wavelet Transform

Removal of speckle noise from Synthetic Aperture Radar (SAR) images is an important step before performing any image processing operations on these images. This paper presents a novel Stationary Wavelet Transform (SWT) based technique for the purpose of removing the speckle noise from the SAR returns. Maximum a posteriori probability (MAP) condition which uses a prior knowledge is used to estim...

متن کامل

Recent Advances in Synthetic Aperture Radar Enhancement and Information Extraction

Synthetic Aperture Radar (SAR) systems are all-weather, night and day, imaging systems. Automatic interpretation of information in SAR images is very difficult because SAR images are affected by a noise-like characteristic called speckle that arises from an imaging device and strongly data and makes automatic image interpretation very difficult. The speckle noise in SAR images can be removed us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017